If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-4y-1.75=0
a = 1; b = -4; c = -1.75;
Δ = b2-4ac
Δ = -42-4·1·(-1.75)
Δ = 23
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-\sqrt{23}}{2*1}=\frac{4-\sqrt{23}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+\sqrt{23}}{2*1}=\frac{4+\sqrt{23}}{2} $
| -5(x+9)+54=15-6x | | 1/3h-3h=-6 | | 8x+4=7x9 | | 7(-5-8n)=-35-6n | | X+3÷2=4x | | 9n-6=-3(2-3n | | -2b-16=(b+8)(-6) | | 5/6x-18=-8 | | 2+7(x-1)=44 | | 2+6x=-2(-4-2x) | | 2(3x+10)=74 | | 3z−8=4z | | 14x-4=12x+8= | | 3/8x+1/3x=20 | | 5x+9x-69=115-9x | | 400=-16t^2+0 | | -12(k+4)=-16 | | 28=-9w-8+5 | | 8x+5x-20=60-7x | | 3(3x+30)=180 | | 8j=9j | | -5(-2+4a)=90 | | e+7=25 | | -x+2=3x | | 10+1x=1+5 | | 6-6a=-(1+5a) | | 4t+10=5t | | (2x-2)/14=(2x-4)/6 | | x2+x-6480=0 | | (2x-2)/14=(2x-4)/16 | | (7,2+x)*4=82 | | 5x-2=1+1x |